Global optimization algorithms for linearly constrained indefinite quadratic problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Optimization Algorithms for Linearly Constrained Indefinite Quadratic Problems

1. I N T R O D U C T I O N Global optimization of constrained quadratic problems has been the subject of active research during the last two decades. Quadratic programming is a very old and important problem of optimization. It has numerous applications in many diverse fields of science and technology and plays a key role in many nonlinear programming methods. Nonconvex quadratic programming re...

متن کامل

An Algorithm for Global Minimization of Linearly Constrained Quadratic Functions

A branch and bound algorithm is proposed for finding an approximate global optimum of quadratic functions over a bounded polyhedral set. The algorithm uses Lagrangian duality to obtain lower bounds. Preliminary computational results are reported.

متن کامل

Simplified Copositive and Lagrangian Relaxations for Linearly Constrained Quadratic Optimization Problems in Continuous and Binary Variables

For a quadratic optimization problem (QOP) with linear equality constraints in continuous nonnegative variables and binary variables, we propose three relaxations in simplified forms with a parameter λ: Lagrangian, completely positive, and copositive relaxations. These relaxations are obtained by reducing the QOP to an equivalent QOP with a single quadratic equality constraint in nonnegative va...

متن کامل

Approximation Algorithms for Indefinite Complex Quadratic Maximization Problems

In this paper we consider the following two types of complex quadratic maximization problems: (i) maximize zHQz, subject to z k = 1, k = 1, ..., n, where Q is a Hermitian matrix with tr Q = 0 and z ∈ C is the decision vector; (ii) maximize Re yHAz, subject to y k = 1, k = 1, ..., p, and z l = 1, l = 1, ..., q, where A ∈ Cp×q and y ∈ C and z ∈ C are the decision vectors. In the real cases (namel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1991

ISSN: 0898-1221

DOI: 10.1016/0898-1221(91)90163-x